
Journal of Statistical Physics, Vol, 43, Nos. 5/6, 1986

Monte Carlo Physics on a Concurrent Processor

G. C. Fox, 1 S. W. Otto, 1 and E. A. Umland 2

We show how Monte Carlo problems of various kinds can be efficiently
implemented on a parallel processor possessing the interconnect topology of a
hypercube. Examples discussed include lattice gauge theory, the physics of two-
dimensional melting, long-range interactions, and simulated annealing.

KEY WORDS: Monte Carlo; concurrent computation; hypercube; load
balancing; Coulomb gas; lattice gauge theory; melting.

Dedicated to
Eric Alexander Umland

BS M1T, 1978
Ph.D. Rice University, 1982

Bantrell Prize Fellowship Caltech, 1983
Scientist in Caltech Concurrent Computation Program, 1985

Tragically, Eric was killed on November 17, 1985 in a light plane crash during bad
weather. He was a brilliant scientist with whom it was a joy to work. His research con-
tributions will be remembered and continued.

WATER
Ashes on the wind
ice cold, snow
winter of the heart

Blue jay cries
lost and angry
against a cold and empty
dawn
wings clipped
soul flies on alone

JoAnn Boyd Anderson

Work supported in part by DOE grant DE-FG 03-85ER25009 and the Parsons and System
Development Foundations. S. W. Otto is supported by a Bantrell Research Fellowship.
a California Institute of Technology, Pasadena, California 91125
2 Jet Propulsion Lab, Pasadena, California 91109.

1209

0022-4715/86/0600-1209505.00/0 ~1 1986 Plenum Publishing Corporation

1210 Fox, Otto, and Umland

1. I N T R O D U C T I O N

Despite the remarkable advances in computing power achieved in the latter
half of this century, it seems unlikely that further order-of-magnitude
progress due to improvements at the microscopic (integrated circuit) level
can be maintained. Even if the seemingly inexhaustible well of cleverness of
the chip designers fails to run dry, economical and fundamental physical
constraints will eventually force a leveling off.

Accordingly, it is worthwhile to examine other approaches to unboun-
ded computing power. At present, the concept of parallel processing, where
many computers run parts of a problem simultaneously, appears more
promising. If parallel computing technology and algorithms can be
developed such that the speed-up (ratio of computing speeds of a con-
current computer to a single processor) increases sufficiently rapidly with
the number of processors in the parallel machine, then increases in both
calculational speed and (distributed) fast memory are in principle
unlimited. The Caltech/JPL Concurrent Computation Program (C3P) (1)
has produced hardware and software capable of satisfying this criterion for
a wide class of large computational problems. It is the purpose of this
paper to describe our work on a particular member of this class, namely
Monte Carlo physics simulations.

We begin with a discussion of the Caltech/JPL parallel processors and
of the issues involved in writing efficient parallel algorithms. Several
parallel processors have been constructed and are running; we describe
their general features below.

The H y p e r c u b e

A Caltech/JPL parallel processor is a multiple-instruction-multiple-
data (MIMD) machine. That is, each node is a complete CPU with
arithmetic unit and memory. Each node can be execute instructions and
access its own memory independently of the others. This is in contrast to,
for example, a single-instruction-multiple-data (SIMD) machine (another
common parallel architecture) which applies the same instruction in all of
its nodes to different sets of data.

The nodes can communicate with each other via a message-passing
system. An exterior processor, called the Intermediate Host (IH) serves as a
data conduit between the hypercube and the outside world. The eom-
munication topology of the computer is that of a p-dimensional cube
(hence the name "hypercube") with 2 p processors forming the vertices (see
Fig. 1). The p links per vertex represent the possible communication chan-
nels. Thus, though the total number of nodes (N= 2P) may be large, the

Monte Carlo Physics on a Concurrent Processor 1211

Fig. 1. Hypercube architecture: 2 p computers at the corners of a cube in p dimensions, con-
nected along the edges of the cube.

maximum communication distance is small, equaling p. This topology
appears to be an excellent compromise between the two extremes of no
communication between nodes (simple design but very limited in the types
of problems the machine can handle) and direct communication links
between all nodes (fastest communication, but N(N- 1)/2 links for an N-
processor machine calls for complex and expensive hardware). Moreover,
the hypercube includes within it the topologies of most scientific problems
(e.g., meshes, rings, binary FFT). More specific information on the
hardware for the various hypercubes in use or planned can be found in the
Table I.

Philsophy of Parallel Algorithms

Define the efficiency of a parallel processor as

S
~ = - (1)

N

where a particular problem runs S (the speedup) times faster on an N-node
concurrent processor than on a single-node machine using an optimal
sequential algorithm. The efficiency is less than unity for three reasons:

1. Communication overhead
The time spent communicating between processors is "wasted." It is
desirable to minimize the ratio of communication to calculation time.

1212 Fox, Otto, and Umland

Table I. Comparison of Hypercubes

-- -- Finished/Available Machines c -- -~ ~- Next generation

Caltech(Seitz), Caltech(JPL), INTEL, Caltech(JPL),
Mark I Mark II iPSC Mark III

Main processor Intel 8086, INTEL 8086, INTEL 80286, MOTOROLA 68020,
5 Mhz 8 Mhz 8 Mhz 16 Mhz

8 32 32 32

64 128 128 1024

0.125 0.25 0.5 4 + add-on

INTEL 8087 INTEL 8087 INTEL 80287 MOTOROLA 68881,
WEITEK 1164/1165

(Scalar unit)

30-45 K 30-45 K 100 -~ 1000 K b

Nodes/module

Maximum nodes/machine

Memory/node (Mbytes)

Floating point processor

64-bit floating point 20-30 K
performance (flops/node)

Raw communication 4 6
speed (Mbit/s)

Measured communication speed 0.5
(including software
overhead) (Mbit/s)

Maximum machine 8 32
memory (Mbytes)

Maximum machine 10 25
performance (x VAX 11/780)

10 100

0.8 0.01 ~ 0.5 a 15 (estimate)

64 4096

~30 1000--.5000 b
(scalar)

aThe higher bandwidth (0.5Mbits/s) is for large packers (~>1 Kbyte) only. The lower value
corresponds to small packets containing few words.

b The mark III vector floating point unit will give up to a factor of 10 higher performance.
c Commercial hypercubes from AMETEK, Floating Point Systems and NCUBE were not available
for evaluation when this article was written.

.

.

L o a d b a l a n c i n g
It is o p t i m a l to have each processor d o i n g the same a m o u n t of work ;
o therwise some processors will be idle pa r t of the time.

N o n o p t i m a l para l le l a l g o r i t h m
It m a y be tha t the m o s t efficient para l le l a l g o r i t h m for a g iven p r o b l e m

is n o t as g o o d as its best s equen t i a l c o u n t e r p a r t . As a n example the so-
cal led "b i ton i c " so r t ing a l g o r i t h m is very efficient in ach iev ing load-
b a l a n c i n g a n d low c o m m u n i c a t i o n cost on the hype rcube , b u t is p o o r e r
t h a n m o d e r n sequen t i a l so r t ing schemes. ~2)

M o n t e Carlo Physics on a Concurrent Processor 1213

In practice one attempts to balance the computational load and
minimize communication time by an optimal decomposition of the
problem. That is, the degrees of freedom (fields, particles, galaxies, matrix
elements, etc.) of the problem are divided up into subdomains each of
which is assigned to a different processor. In general, this is not a trivial
task. However, for the Monte Carlo physics problems addressed in this
paper (QCD, 2-D melting, long-range interactions), decomposition is
relatively straightforward because the computational work associated with
each degree of freedom is about the same. It follows that the optimum
strategy is to attempt to maintain equal numbers of degrees of freedom in
each processor to achieve load-balancing. There exists as well many
situations in which the computational work per degree of freedom varies
greatly. An example is a war game simulation, where the computational
load involved in calculating the effects of a missile landing is significantly
greater than that of advancing a soldier forward in time! Such problems
are termed "inhomogeneous" and represent a difficult optimization
problem for parallel implementation. A statistical approach, namely
simulated annealing, to load-balancing such problems will be described in
Section 3.

If we focus for the moment on homogeneous problems, we will be able
to elucidate some general points concerning concurrent computation. A
primary question is what problems are amenable to solution via parallel
algorithms. The answer is "large" problems, large in the sense of possessing
very many degrees of freedom. Small problems suffer in general from a low
efficiency because communication between processors and load imbalance
effects consume a significant fraction of the total running time. This is clear
from a consideration of "short range" problems where a calculation for any
one degree of freedom depends only on its near neighbors. Here com-
munication between processors is clearly an edge effect and declines as a
fraction of the total run time as the number of degrees of freedom per
processor grows. Longer-range problems retain high efficiency despite
greater communication needs, however, because they are in general much
more computationally intensive as well. This example illustrates another
feature of concurrent computation; parallel computers prefer "hard"
problems, that is, problems that require significant calculation per degree
of freedom.

It is possible to quantify some of these ideas in the following equation
for the efficiency

(const t m) (2)
e = 1 f (n) toa,c /

Here t /to.~c is the ratio of typical interprocessor communication

1214 Fox, Otto, and Umland

time to calculation time and is the key hardware characteristic determining
the communication overhead. The quantity f(n) is a function of the num-
ber of degrees of freedom in each processor. For all problems we have
studied, f is a monotonically increasing function of n. Finally, the constant
depends on the amount of calculation per degree of freedom and declines
as the complexity of the problem increases. Equation (2) demonstrates that
the speed-up S = ~N will be linear in the number of processors as long as n
is kept fixed. The efficiency suffers, however, if one keeps the problem size
fixed while scaling up the number of nodes in the concurrent computer.

It should now be clear why Monte Carlo physics problems are good
candidates for treatment via parallel algorithms: they typically consist of
large numbers of degrees of freedom (sometimes 10 6 o r more) and often
require quite complex computations. We point out, however, that Monte
Carlo problems are but one example of a wide class of problems that we
have found to be amenable to numerical solution on a parallel computer.

2. MONTE CARLO PHYSICS ON THE HYPERCUBE

Before proceeding to the several kinds of physics problems we have
attacked by Monte Carlo methods on the Caltech/JPL parallel processors,
we briefly describe two issues that are important in the development of
convenient Monte Carlo algorithms. We first address the question of
generating random numbers in parallel. This should not be done in some
naive way; for instance, if one merely gives the random number generators
different starting seeds in different nodes, how is one to be sure that some
strong correlation doesn't develop between the various sequences? For-
tunately, there exists a way for a parallel random number gnerator to easily
mimic the behavior of that on a sequential machine.

The most common method for generating pseudo-random numbers is
called the linear congruential method and is given by

%+1 = (aT, + b) mod(m) (3)

where ~ is a sequence of pseudo-random numbers and a, b, and m are con-
stants. It is possible to reproduce this sequence exactly on a parallel
machine. For N processors, the idea is to have every processor calculate the
Nth iterate of (3). Given (3), it is easy to write down the n + Nth member
of the sequence directly in terms of the nth (33

T n + N = (ATn + B) mod(m) (4)

A = a N

B = (l +a+a2 + ... +aN-1)b

Monte Carlo Physics on a Concurrent Processor 1215

Now the idea is to have each node compute random numbers using
(4) (the sum is calculated only once and stored). If the nodes are now gives
a staggered start in the random number sequence, the procesors will "leap-
frog" over one another and will reproduce exactly the random number
sequence of a sequential machine. This is convenient for debugging com-
plex parallel programs and also erases worries one might have regarding
correlations between the random numbers at each node.

The second issue a Monte Carlo parallel programmer must face is the
problem of satisfying detailed balance. That is, one is assured that a set of
configurations {C} are distributed according to the correct (Boltzmann)
distribution by requiring

P(C--+ C') e -s(c'~

P(C'--+ C) e -s(cl (5)

where P is the transition probability from one configuration to the next
and S is some function of configurations (e.g., the action). In order for
detailed balance to hold during a configuration update, it is necessary that
the previous state be well-defined. This presents some difficulty in con-
current applications, where many updates can occur simultaneously. Such
a problem is particularly severe for systems with long-range interactions,
where the influence of a change in a single degree of freedom is felt over
great distances. We shall see that maintaining the detailed balance con-
dition is an important constraint affecting the development of concurrent
Monte Carlo algorithms to measure the properties of such systems.

S h o r t - R a n g e In te rac t ions: Lat t ice G a u g e T h e o r y

Our first example (4~ is relatively easy to implement with a parallel
architecture. Lattice gauge theory models a quantum field theory on a dis-
crete, finite spare-time lattice. The degrees of freedom are the field variables
at each site. The problem is homogeneous and regular because the amount
of computational work associated with each variable is the same and
because sublattices of equal size can be assigned to each processor. Con-
sequently, load-balancing is trivial. Concurrency arises from updating via
Metropolis or heat bath techniques separate sites in each processor
simultaneously. Since the gauge theories commonly studied possess interac-
tions between field variables on nearest-neighbor sites only, communication
and detailed balance constraints are an edge effect.

Let us examine this point in some detail. For nearest-neighbor inter-
actions, lattice dimension d, and number of variables per processor n, the
calculation time involved in a sweep of the lattice is 2dntoa~c. The

1216 Fox, Otto, and Urnland

communication time is 2dn(a+~)/Jt (see Fig. 2). The ratio falls with
increasing n as

comm 1 tcomm

calc n t/d /talc
(6)

which derives f (n) of (2). Remarkably, the communication overhead ratio
improves as the length of interaction increases. This is because while com-
munication time increases, so does the calculation time. In fact, for the
two-dimensional case illustrated in Fig. 2, it can be shown that f (n) ~ n as
the interaction length --, oo. For the short-range lattice gauge problem con-
sidered here, detailed balance is easily satisfied since neighboring points
across a processor boundary need never be updated simultaneously. The
operating system (OS) is designed so that processors that get out of step
for some reason (e.g., one runs slightly slower than the others) are

communicated ~ �9

Processor " ~ *]
boundary �9 �9

Stencil .~0

�9 Calculation 4n tool=
Communication 4 . ~ t : ~
Colc/Comm ~ ~ (tc=1r

� 9 1 4 9

� 9 1 4 9 1 4 9

O O O 0

Stencil ,~

Calculation 8n tc,lc
Communicotbn 8-,~ tcor~
Colc/Comm - ~ (tcQl:/tcomm)

�9 0

Stencil i { i
Calculation 8n tr162
Commun~otion 4(~n+l) tcomm
Calc/Comm - 2.r (to=I:/tcomm)

Fig. 2. Communica t ion as an edge effect, illustrated for a two-dimensional lattice with
16 sites per processor.

Monte Carlo Physics on a Concurrent Processor 1217

resynchronized whenever communication occurs. Another characteristic of
this OS is that communication occurs only between processors on
neighboring vertices of the hypercube. It is called the Crystalline Operating
System (CROS). (1~

In the Lagrangian form of lattice gauge theory, most observables
require integrals over loops that can spread over several processors.
Explicitly keeping track of all necessary interprocessor communications is
more difficult here than for the updating problem described above.
However, it is possible to construct a simple recursive algorithm which
takes a list of number as input (each number giving the direction of one
step in the loop) and travels around the loop. The same shape loop is
necessarily calculated by all processors simultaneously, which is entirely
satisfactory.

The problem we have studied most extensively is the potential as a
function of distance between static quarks in the quenched approximation
to lattice QCD (results are shown in Fig. 3 for a 204 lattice). Efficiencies on

(*I0)

19.53

1 8 . 1 4

I~.74

15.3t

Potential
V (Ge V)

13.94

IZ.54

/ /
/

/

/

1 1 . 1 4
I I i t i

4.16 9.75 15.33 20.91 26.49 32.0S 37.68

(=io)

r (GeV -1)

Fig. 3. Q(2 potential vs distance computed on 204 lattice in the quenched approximation to
lattice QCD.

1218 Fox, Otto, and Umland

the order of .95 were consistently obtained. This was due to the high degree
of load-balancing obtained, low communication overhead, and the inherent
complexity of the calculations involved (multiplication of SU(3) matrices).
In particular, the constant in (2) is found to be proportional to 1/m for
SU(m) gauge groups. Most problems in lattice gauge theory appear to be
amenable to a parallel treatment. The kinds of problems we have or will
run include the qO potential, glueball masses, renormalization group, field
distributions, pseudo-fermions, and Hamiltonian and Langevin methods.

Medium Range Interactions: Two-Dimensional Melting

Here we consider an example (5) that poses two additional challenges
to the concurrent programmer--how to handle an "irregular" problem,
and the need to be careful in maintaining detailed balance. The problem
studied is that of the solid-liquid phase transition in two-dimensions. The
system consists of a collection of particles interacting through a pairwise
potential. A standard Metropolis Monte Carlo procedure is employed in
the simulation. As usual, the correct distribution of configurations will be
attained only if particles close enough to affect one another are never
updated simultaneously. This is, of course, never a problem in a sequential
algorithm but require careful programming on a parallel processor.

The particles in the simulation are grouped into structures called cells.
Each cell represents a fixed region of space. The size of the cell is chosen
sufficiently large so that the only particles that can affect a particle during
an update can be found in the same cell as the particle in question and in
the eight neighboring cells. The initial configuration consists of 16 particles
in each cell. The cells are distributed equally among processors; each
processor can contain from 1 to 64 cells (16 to 1024 particles). It is clear
that during the simulation particles can become unevenly distributed
among the processors since they are free to move between cells. Com-
putational loads are therefore unbalanced as well, though, since the density
is reasonably high, the imbalance is not great. Because the computational
work per particle remains the same, this problem falls within a class termed
"irregular homogeneous."

Updates occur concurrently in all processors. Detailed balance is
assured by the following "time-stamping" algorithms. When a particle in a
cell in processor A is being updated and requires position information
about particles in a neighboring cell in processor B in order to evaluate th~
potential energy, a request for this information is sent to B. We associate
with each particle being updated a time. This time will be the same for a//
requests generated by this particular particle update in processor A. (The
time is generated by the local clocks in each processor. The algorithm is

Monte Carlo Physics on a Concurrent Processor 1219

most efficient if one could use a global clock, but is consistent whatever the
relative timing of the local clocks. The algorithm synchronizes the clocks in
the processors occasionally and is not affected by small drifts in between.)
When a conflict occurs with a simultaneous update in processor B, for
example, a response is sent if the time stamp of the information request
from A is earlier than that of update occurring in B. If the time stamp of
the information request from A is later, it must wait for a response until the
update in B is finished. The "earliest" update is given priority.

This rather elaborate means of resolving update conflict is necessary
because of the special nature of the communication scheme used for this
problem. Instead of communications synchronizing the progress of the
processors as in the previous example, problems that are irregular require
the ability to run asynchronously on a parallel machine for efficient
operation. That is, the sending or receiving of a message should not halt
operations in a processor, rather the processor should be able to complete
its immediate task before attending to exterior data. Such a communication
system is called "interrupt driven" (IDOS(12)). Another characteristic of
this system is the ability to forward messages, since not all messages are
addressed to adjacent processors in this problem.

The complicated communication structure and imperfect load
balancing reduce the efficiency of the algorithm when compared to homo-
geneous problems. Nonetheless, efficiencies as high as 85 % were achieved
for the maximum size problem of 1024 particles per processor. For the
minimum size problem of 16 particles per processor (1 cell), the efficiency
was 50%. The hypercube prefers large problems!

Long-Range Interactions: Two-Dimensional Coulomb Gas

We come now to the problem (6) of long-range interactions, where the
efficiency of a parallel computation has often been questioned. Consider a
two-dimensional Coulomb gas at temperature T on a D x D square lattice
with, for simplicity, free boundary conditions. On each site r = (x, y) is
defined as an integer electric charge variable q(r)= -1, 0, + 1. The energy
of each configuration {q(r)} is

E({q(r)}) = ~ q2(r) In D _ q(r) V(r) (7)
c F

where the electric potential

V(r)= ~ q (r ') l n (~)
I'" ~ I"

(8)

82243/5-6-32

1220 Fox, Otto, and Urnland

and c parameterizes the charge self-energy. Configurations {q(r)} are
generated by a heat-bath type of algorithm. Details can be found in Ref. 6.
For our purposes it is sufficient to know that an exponential function of the
potential V, co, is defined so that if an update attempt

Aq = qneW(ro) -- q~ =/: 0 (9)"

then at the other lattice sites r, ~o(r) is updated by

(I t - _012) q/T
\ D2 j (10)

and only then does the program proceed to a new r o. This ordering is
obviously crucial for maintaining detailed balance. Such a procedure for
handling long-range forces is easily implemented on a sequential machine;
we proceed to show that an efficient concurrent algorithm exists as well.

For N processors, we divide up the lattice into N domains with an
equal number of sites n. Each processor is assigned a domain and stores the
charges q and weights ~o in the domain. The IH will manage the progress of
the algorithm. All processors concurrently generate charge updates at a site
r~, where i is the processor number, and send the site location and the
value of Aq to the IH. Because the acceptance rate is small, many hits are
made at each site. The IH steps through this data set until the first nonzero
Aq is obtained. It and the site location are passed to all the processors so
that the weights m(r") can be updated. All other updates are discarded. This
insures that the detailed balance is maintained. This sequence is repeated
with the proviso that the IH restarts the inspection of the data set for suc-
cessful updates at the procesor following that whose update was successful
in the prior iteration (the set is inspected cyclically, i.e., the first position
follows the last). The low acceptance rate requires this procedure; if the
acceptance was high the updates could be done sequentially in a single
processor. For large or small acceptances, we thus find that the calculation
time spent updating the o)(r) is much greater than that spent updating q or
communicating to and from the IH (the "sequential bottleneck"), and so
the time wasted is relatively small. Hence, efficiencies on the order of .95
are obtained. At constant n, therefore, speed-up is linear in n with a slope

1. A detailed analysis of the efficiency can be found in Ref. 6.

3. M O N T E C A R L O A P P R O A C H TO C O N C U R R E N T
O P E R A T I N G S Y S T E M S

Load-balancing affects crucially the prformance of a computation
executing in parallel on a concurrent processor (CP). By "load-balance" we

Monte Carlo Physics on a Concurrent Processor 1221

refer to the amount of cpu idling occurring in the processors of the con-
current computer: a computation for which all processors are continually
busy (and doing useful, nonoverlapping work) is considered perfectly
balanced. This balance is nontrivial to achieve, however. The problem of
distributing a computation in an efficient manner onto a CP can be fruit-
fully attacked via the Monte Carlo technique of simulated annealing. (7) The
work described in this section is described in more detail in Ref. 8.

Operat ing System Model

We have some large computation which we would like to execute in
parallel on the CP. To do this, of course, the computation needs to be split
up into small pieces which we will call processes. The number of processes
is not necessarily the same as the number of processors of the CP.
Processes will need to communicate with one another in order for the com-
putation to proceed. Assume that the processes and their communication
requirements are changing with time; processes can be created or
destroyed, communication patterns will move. This is the natural choice
when one is considering timesharing the CP, but can also occur within a
single computation. It is the task of the Operating System (OS) to manage
this set of processes, moving them around if necessary, so that the CP is
used in an efficient manner.

The OS performs two primary tasks. First, it must monitor the ongo-
ing computation so as to detect bottlenecks, idling processors, and so on.
Second, it must modify the distribution of processes and also the routing of
their associated communication links so as to improve the situation. In
general, it is very difficult to find the optimum way of doing this; in fact,
this is an NP complete problem. Approximate solutions, however, will
serve just as well. We will be happy if we can realize a reasonable fraction
(lets say .5) of the potential computing power of the CP for a wide variety
of computations. The Monte Carlo based method of simulated annealing
seems to offer a way of doing this. We will see in what follows that the OS
functions as a heat bath, keeping the computation "cool" and therefore
near its' ground state (optimal solution).

The Physical Analogy

One may usefully think of a parallel computation in terms of a
physical analogy. Treat the processes as "particles" free to move about in
the "space" of the CP. The requirement of load balancing acts as a short
range, repulsive "force," causing the particles, and thereby the com-
putation, to spread throughout the CP in an evenhanded, balanced man-

1222 Fox, Otto, and Umland

ner. The situation is somewhat similar to a gas or fluid filling up a con-
tainer. This analogy, though, is not complete. In a gas, the repulsive
pressure which fills the container is due to the microscopic motion
(velocity) of the particles, not to any true, repulsive force between them. In
the case at hand, we do not want the particles (processes) to have a
significant velocity--we want them to move slowly so that they "stay put"
in processors long enough to do useful work. A better analogy, therefore, is
that of particles interacting via a repulsive force in a system at a low tem-
perature.

A conflicting requirement to that of load-balancing is interparticle
communications; the various parts of the overall computation need to com-
municate with one another at various times. If the particles are far apart
(distance being defined as the number of communication steps between
them) large delays will occur, slowing down the computation. We therefore
add to the physical model a long-range, attractive force between those
pairs of particles that need to communicate with one another. This force
will be made proportional to the amount of communication traffic between
the particles, so that heavily communicating parts of the computation will
coalesce and tend to stay near one another in the computer.

S i m u l a t e d Annea l ing

The above can be taken as a rough description of the "Hamiltonian"
of the parallel computation. The problem of executing the parallel com-
putation in an efficient manner now becomes that of finding the ground
state of this Hamiltonian. A powerful method of solving this problem is
called simulated annealing. (7~ This technique begins with an arbitrary
initial state (in our case, an arbitrary decomposition of the processes onto
the CP). The Metropolis Monte Carlo method is then applied to this
starting configuration, where trial changes are made to the configuration
and are accepted or rejected in the usual way. In this way, the OS functions
as a heat bath at temperature T. When one starts the annealing, bringing
the system in contact with the heat bath, the system is at some temperature
other than T. After some amount of time (the thermalization time) the
system and the heat bath reach thermal equilibrium. The annealing now
consists of slowly (adiabatically) lowering T. This pulls down the tem-
perature of the system with it (if done sufficiently slowly) so that eventually
only the ground-state configuration of the system survives (remember,
probability ~e - m r and T ~ 0).

Physically, the OS functions to keep the system in thermal
equilibrium, and cool.

Monte Carlo Physics on a Concurrent Processor 1223

A Good Hamiltonian

Let us be more precise and actually specify a Hamiltonian with the
desired features. Think of the processors as "sites" and of the com-
munication channels between them as bonds or links. The Hamil tonian will
be a sum of terms defined on the sites and the bonds. Define

Wi = the computat ional load of process i (11)

The OS determines this load by monitoring what happened in the recent
part. Once we have the Wis we need to add to the Hamiltonian a quadratic
term in the sum of Wis at the node so as to affect load-balancing

For c~ positive, this produces a short-range repulsive force between
processes.

Now for communication costs. A reasonable choice for the cost
flmction of communications seems to be the following. Define

c o. = amount of communicat ion traffic between processes i and j (13)

d o. = number of steps in computer of chosen pathway

H =Zci jd i j
ij

= communication cost which impacts the system linearly

= a linear potential energy between processes ~ a constant (as a

function of distance) attractive force between processes.

H is a long-distance nonlocal term, but because we have made it
linear in d~ (which seems a correct choice) we can actually deal with it in a
local manner. Communicat ion costs are naturally associated with the
bonds of the machine. The OS will moni tor the communication traffic
going through a channel (bond) and then associate with this traffic an
energy cost Hbona. Since any particular communicat ion pathway will show
up in all the bonds along its path, this will produce a linear (in distance)
cost to the overall system. We have

gTntal = Z gsite + Z gbond (14)
sites bonds

As defined so far, we can think of this Hamiltonian as describing a set
of particles which repel each other at very short distances and also have a

1224 Fox, Otto, and Umland

set of rubber bands stretched between them which causes them to attract
one another over long distances. There is one additional effect we would
like the Hamiltonian to produce--we do not want the communication traf-
fic to be overly high at any particular link. Physically speaking, we can
think of this congestion effect as being a short-range, repulsive force
between the rubber bands themselves all along their lengths. This seems to
be a complex interaction to model, but can actually be done easily. We do
this by completing our specification of Hbond. We do what we did before--
measure the traffic through a link, but instead of associating a linear cost
(in traffic) at this link, we use a quadratic cost. That is

tlink -~ traffic through link (15)

Hbond = ~(tlink) 2

with ~ some parameter. As before, this quadratic cost causes the "rubber
bands" to repel one another all along their path. Our complete
Hamiltonian is that of (14), with Hsite given by (12) and Hbond given by
(15).

This rather nontrivial (but easily, that is, locally, computable)
Hamiltonian load balances, holds down communication delays, and holds
down communication traffic congestion (which effects both the startup
delay and flow-through, streaming rate of communications).

A Toy Example

To illustrate a few of the ideas presented here we will present the
results of the above methods applied to a simple example. The example
computation to be performed on the CP is the time evoluation of a set of
particles about in a two-dimensional world, interacting via a short-range
force. In the terminology of the last section, we can think of each physical
particle as representing one process. The short-range force means that the
computational load associated with the update of a single particle is a
function dependent upon the number of neighboring particles to the one in
question.

The usual method of evolving a set of particles like this on a CP is
shown in Fig. 4 ~ t h e problem is decomposed by dividing the physical space
up into equal area squares. The problem with this type of decomposition
is that the particles move about, form clumps, shock waves, and so on,
causing load imbalances. This type of performance degradation has been
seen in actual computations on the Caltech/JPL Hypercube. ~ We model
this kind of imbalance by choosing the particles of our toy example to
clump somewhat toward the center of the space, as is seen in Fig. 4. The

Monte Carlo Physics on a Concurrent Processor 1225

�9 * ; �9 , � 9

. ~

�9 ~ " �9

. ~

~ 1 4 9

�9 ; . . �9

I

Fig. 4. The toy problem to be load-balanced: the time evolution of particles moving about in
a two-dimensional world�9 The particles interact via a short range force. This configuration was
constructed with a strong clumping toward the center in order to study load-balancing.

performance degradation that this clumping would lead to for the square
decomposition is shown in Fig. 5, where it is seen that the computat ional
load (including communication costs) per processor varies from 173 to 3
(in some arbitrary units)�9

The computational efficiency for the square decomposition can be
estimated as follows�9 The average computat ional load for this example is
39.6, so an optimal decomposition would give each processor an amount of
work slightly higher than this average. The optimal value will be somewhat
higher than the average since the optimal decomposition will necessarily
have greater communication costs than the square decomposition of Fig. 5.
This is due to the fact that as the high load areas of the problem are
divided up among many processors, more communication traffic must
occur, and this is counted as part of the energy cost. For the square decom-
position, however, one processor has a load of 173, and the overall com-
putation will proceed only at the speed of the slowest processor. An
estimate of the efficiency is therefore 40/173, or 0.23.

1 2 2 6 Fox, O t t o , and U m l a n d

3 10 �9 ." 6 4

7 5 72 �9 93 "

, �9 , , " , , �9 ,

f

4 74 .. 97 " ~;~" "" 75
! . �9

, ~ ,

"15 62 " " 173 ' .. 16~" 109

, , o " o

�9 �9 : �9 '
�9 �9 ~

7 37" . "40 : .II0 5

3 17

25" 6

31

4 7 �9 12 11 12" I1

" .

Fig. 5. The same as Fig . 4, with the usual, square decomposition overlaid. The numbers
represent the total computations load in each processor. At this point, the computation is
extremely unbalanced: the loads vary from a high of 173 to a low of 3.

A simulated annealing Monte Carlo was applied to the example. For
ease of visualization, the processor boundaries were moved instead of
moving the particles, with the constraint that the regions update by each
processor remained convex quadrilaterals. After annealing, the result shows
in Fig. 6 was obtained, with computational loads varying from 49 to 31,
within about 20 % of the optimum solution. The processors have migrated
toward the center, all getting a "piece of the action" at the central clump of
particles�9 Note that, as mentioned above, the mean load per processor
increases as the annealing proceeds. The efficiency of the computation, now
that the simulated annealing has taken place, is 40/49, or .82.

Continued annealing would eventually find the actual optimum, but a
point of diminishing returns is quickly reached where many Monte Carlo
sweeps are required to improve the situation only slightly�9 The Monte
Carlo itself will use up computational cycles of the CP, so it is clear that in
any real situation one will have to put up with some imbalance. It is worth
pointing out that the simulated annealing noticeably outperformed simple
iterative improvement�9 Iterative improvement can be though of as the

Fig. 6. The result after annealing the decomposition. The processor regions were restricted to
remain quadrilaterals. Balance is now quite good: varying from 49 to 34.

� 9 1 7 6

�9 o

D I I �9

o,

�9 o

�9 ~

�9 � 9 1 4 9
|

�9 o

. .

�9 , , . , ,

�9 . o

Fig. 7. The "shock wave" example.

Fig. 8.

3 tO �9 " 6

7 I 9

4 7 2 6 �9

"~5 4~ i ' ' 162"

,�9176
8 49 137

.

� 9

�9 �9 ~ 1 7 6 �9

30 .' :'~20 60

95" " ~7 3

33 "" 4 31

57 . '138 ;o 15 1
o ,

: . . : " :

i

b'~. . . 57 �9 12 11 12~
�9 , . .

As in Fig. 5, the usual decomposition produces an imbalance varying from 220 to 1.

Fig�9 9. The result of annealing�9 The max imum load has now decreased to 58, meaning that
the entire computat ion will run at this speed. The restriction to a 6 • 6 connected set of
quadrilaterals has constrained the annea l ing- -a better solution could be found with a more
general decomposition.

M o n t e Car lo Physics on a Concur ren t Processor 1229

Monte Carlo algorithm with the temperature set to O~only moves which
improve the situation are accepted, all others are rejected. In terms of the
energy function, this method goes only downhill and so therefore gets trap-
ped in local minima--a phenomenon observed in the case at hand.
Iterative improvement, however, can be done rapidly. Since in practice one
can never reach the true optimum anyway, it may form a useful heuristic in
some cases.

An irregularity of a different shape was also tried and is shown in
Fig. 7. This "shock wave" example has an enhanced density of particles
occurring along the diagonal of the space. The load imbalance of the naive
decomposition is shown in Fig. 8. The loads vary from a high of 220 to a
low of 1, corresponding to an efficiency of roughly 0.18. After annealing,
the result of which is shown in Fig. 9, the processors crowd along the
"shock" and change the load distribution to a max of 58 and a rain of 26,
or an efficiency of about 0.69.

Scattered Decomposition

We will close by describing a new decomposition technique which
load-balances in a very natural way and can be understood in terms of the

Fig. 10. The example finite element problem.

1230 Fox, Otto, and Umland

physical analogies discussed above. This decomposition is very simple to
implement and seems to be effective for many types of load-balancing
problems. We present the method in the context of finite element analysis
of structure of a nontrivial shape (i.e., not rectangular), but it is obviously
more general than this. ~l~

Figure 10 shows the example computation: the finite-element analysis
of a shape which doesn't map onto a hypercube or mesh-connected com-
puter in any trivial way (that is, via a square or rectangular decom-
position). Suppose, for simplicity, we wish to perform this calculation on a
two-dimensional mesh of processors. The optimal decomposition, which
could be found by the methods outlined previously, will look something
like that shown in Fig. 11. This is all well and good, but it must be admit-
ted that simulated annealing is a nontrivial undertaking: if we could find a
simple method which gave decompositions almost as good, we would be
happy. The "scattered decomposition" accomplishes this.

The decomposition is arrived at in the following way. First, take the
entire problem and surround it by a large rectangle. The rectangle is sub-
divided into smaller rectangles, as shown in Fig. 12. Call these smaller rec-

Fig. 11. A decomposit ion of Fig. 10 onto a 16-processor CP which is close to optimal. The
dotted lines show the areas of responsibility of each processor.

Monte Carlo Physics on a Concurrent Processor 1231

Fig. 12. The template overlay. The large squares are "templates," each of which will be
decomposed onto the CP.

tangles "templates." The fundamental idea is to decompose each of the tem-
plates onto the CP by the usual square decomposition. This is illustrated
for template A in Fig. 13. Where a processor region dosn't actually intersect
any of the problem, a null pointer or some appropriate data structure is
stored which signifies that the processor has nothing to do in this template.
After each template is decomposed, the overall situation is as depicted in
Fig. 14~the scattered decomposition. The point is that each processor is
responsible for a scattered subset of the large rectangle; therefore, each
processor will tend to have approximately the same number of intersections
with the actual problem. The concurrent algorithm proceeds by cycling
through the "stack" of templates, updating each according to the usual,
rectangular algorithm. If the algorithm is written correctly (i.e., by not
forcing resynchronization during the update of each template; for details

822/43/5-6-33

1232 Fox, Otto, and Umland

J ~ I .J,.:

_ 4 5

Fig. 13. A magnified view of the template marked A in Fig. 12. Each of the smaller, dotted
squares is a processor of the CP: the template has been decomposed onto a 4 x 4 mesh of
processors. The processors are responsible for the finite elements landing within their regions.

see Ref. 10), it will load-balance quite accurately for arbitrary problems!
Similar ideas were used in some types of matrix algorithms. (11)

As the templates are made smaller, the load-balancing will become
more accurate. The price paid, of course, is increased communication
overhead. Generically, the scattered decomposition will have much more
communication traffic than the optimal decomposition of Fig. 10. Often,
however, communications are relatively cheap (1) and so the scattered
decomposition becomes an attractive possibility. This statement is further
enhanced by the fact that the communication pattern involved in the scat-
tered case is that of the simple, two-dimensional mesh, nearest-neighbor
variety. This kind of communication strategy, in contrast to general, long-
distance message passing (with message forwarding), can typically be made
very fast. An example is the "Crystalline Operating System" for the
Caltech/JPL Hypercubes. (1)

M o n t e C a r l o P h y s i c s o n a Concurrent Processor 1233

I I I
J El 1~4 L4 I jS_

1 I I
-~--i -~ _r Lo FJ 1-

4 s I ~ 17
I I

I I I
iz4 L= i_.l E l 2 s -

I I I
_B .T a -- Fl~_lii_

,1 I s 16 17
I I I

I I I
L2 pl!ll4-1 l_S

I I I
~-. F~__l-i.ql U

4_ I s IB 1.7
I I I

I I 1
_ l ~_ l i a 4 L4.1_1 s_

,I I I
-~--I -~ -1 1-~

, , l _ i s I ~ I 7

I t I
13 1 I,,,~ ~ , ; ~ , ,~ ,; ~ . ; 2 , i . .~ , . 0 , I ~ , 1 ~ , ;P-. , . ~ , I , ' * , ; , " 2 _ , ; ~ .

- ' " i l l . . 1 B _ 1 7 _
I I

I A i i i H-ltH-fft l 1)
i) t).)~ u))J_t, J ~ I 1 3 / . L 4 t ~ .2~I L~ Ll4_l iS_ L z L ~ _ I ~ I / ~ J L 4 L i E

I I I I I I] ~ 1 I I
B _ I ~ I . L B I _ l i I B 1.~ h l ~ B 9 , i._g 1_81_11 r- - -'I rm r-r)N ~T -1 -

_4 I~ I~ !'7 1_4 Is_ I~ I v 4__15 I~ I 7 L4_ I s I ~ I 7
I I I I I I I I I I l ~ I I I

~ I] I ~ I -~ o IZ I~ I~ o I i I ~ 13 I1 I ~ 13

Fig. 14. The entire scattered decomposition, with processor numbers shown.

It seems fairly clear that the scattered decomposition will be a useful
technique in many situations. It would be nice to relate it somehow to the
physical analogies presented above since a deeper understanding would
possibly result.

One of the outstanding features of the scattered decomposition is its
stability. By this we mean that, as the computation changes with time (par-
ticles move, clumping occurs, etc.), the scattered decomposition is quite
insensitive to these changes and will continue to load-balance rather well.
Consider again the computation of Fig. 6. Suppose now that the particles
move and new clumping occurs somewhere else in the physical space. If the
decomposition of the space remains static, severe load imbalances will
rapidly develop. Our first proposal for coping with this is to have the
operating system continue to run the annealing as the computation

1234 Fox, Otto, and Urnland

HCt)

Decomposition

Fig. 15. A sketch of the Hamiltonian versus all possible decompositions.

progresses, and this certainly remains a viable alternative. A scattered
decomposition applied to this problem will continue to load-balance for
almost any pattern of clumping, however, without any annealing. Each
processor "probes" all regions of the problem and so it is rather unlikely
that any load imbalance will occur. We term this property stability.

\

\
%

\
\

\
\

\

H(tl) l I/

V ,/"

\

Fig. 16.
Decomposition

The Hamiltonian at two different times. The scattered decomposition is a relatively
stable minimum.

Monte Carlo Physics on a Concurrent Processor 1235

Stability can be understood in an abstract way in terms of the
Hamiltonian. Figure 15 shows a schematic picture of the shape of the
Hamiltonian function at some particular stage in the time evolution of the
particles in Fig. 6. The horizontal axis represents the various choices of
decomposition, which could be used on the problem. All of this is at time t,
which is the time parameter of the particle evolution. The two decom-
positions, optimal and scattered, give minima, with the optimal decom-
position being the global minimum (by definition). Now consider what
happens to this picture as time proceeds. Something like that drawn in

g

Decomposition

Ca)

i /

Decomposition

(b)

Fig. 17. The time-averaged Hamiltonian. Two scenarios are possible: the "optimal" decom-
position remains the true minimum (a) or the scattered wins (b).

1236 Fox, Otto, and Umland

Fig. 16 will happen--the location of the optimal decomposition will move
significantly, while the scattered minimum will move very little.

In a dynamical situation, where the characteristics of a computation
are changing rapidly, the OS will not be able to "keep up" perfectly with
the computation. This means that the Hamiltonian that actually matters is
not the instantaneous version plotted in Figs. 15 and 16 but a time-
averaged Hamiltonian/q

f
t + T

H(t, T) = g(u) du

where the averaging time T is some natural time scale of the operating
system. An interesting point is that, in terms of/4, the better decomposition
may actually be the scattered one. Because of the rapid shifting of the
optimal decomposition as a function of time, the minimum of / t
corresponding to this will be raised upward while the scattered minimum
will remain approximately the same. As illustrated in Figs. 17 (a, b), two
possible scenarios develop--the minima may or may not cross. Depending
upon the parameters of the problem and upon the hardware characteristics
of the CP, a "phase transition" may occur whereby the scattered decom-
position actually becomes the better decomposition for / t .

4. C O N C L U S I O N S

In this paper we have demonstrated the utility of concurrent com-
putation when the solution of otherwise intractable physics problems via
the Monte Carlo method is desired. The efficient use of the MIMD
machines at Caltech for problems involving interactions of arbitrary range
has been achieved. It appears that problems peculiar to a parallel
implementation such as satisfying the detailed balance condition, minimi-
zing communication between processors, and balancing the computational
load among all the available processors have been satisfactorily resolved.
Moreover, we propose to turn the problem on its head, so to speak,
and use Monte Carlo techniques to enhance the efficient operation of
concurrent operating systems. For example, we showed that simulated
annealing methods are a potentially powerful means of optimizing the
distribution of the degrees of freedom among the processors. An analogy
between a physical system consisting of particles connected by interacting
rubber bands and a possible efficient operating system of a concurrent
processor is remarkably appropriate. We conclude that there is a natural
and useful relationship between Monte Carlo techniques and concurrent
computation.

Monte Carlo Physics on a Concurrent Processor 1237

A C K N O W L E D G M E N T S

W e are gra teful to R. M o r i s o n for his ass i s tance in p r e p a r i n g m a n y of
the figures p r e sen t ed in this paper . W e t h a n k M. J o h n s o n for a l lowing us to

use resul ts f rom his u n p u b l i s h e d w o r k on t w o - d i m e n s i o n a l mel t ing . The
w o r k o n l o a d - b a l a n c i n g is a c o l l a b o r a t i o n wi th D a v e Jefferson in the

U C L A C o m p u t e r Science D e p a r t m e n t .

R E F E R E N C E S

1. G. Fox, Proceedings ofIEEE Compucon Conference, Feb. 28, 1984; G. Fox, IEEE Trans.
N.P.S.S. 34 (1985); C. Seitz, CACM, December (1984); G. Fox, G. Lyzenga, D. Rogstad,
and S. Otto, The Caltech Concurrent Computation Program, in Proceedings of the "1985
ASME International Computers in Engineering" Conference, August 4-8, 1985 (ASME,
Boston, 1985); G. Fox and S. Otto, Phys. Today, May (1984).

2. E. Felten, S. Karlin, and S. Otto, Sorting on a Hypercubic, MIMD Computer, in C3p
Memo 92B.

3. D. E. Knuth, The Art of Computer Programming, vol. 2 (Addison-Wesley, Massachusetts,
1981), p. 10.

4. E. Brooks III, G. Fox, M. Johnson, S. Otto, P. Stolorz, W. ARras, E. DeBenedictis, R.
Faucette, C. Seitz, and J. Stack, Phys. Rev. Lett. 52:2324 (1984); S. Otto and J. Stack,
Phys. Rev. Lett. 52:2328 (1984).

5. M. Johnson, Ph.D. Thesis, Caltech (1986).
6. F. Fucito and S. Solomon, Comp. Phys. Commun. 34:225 (1985).
7. S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, Optimization by Simulated Annealing,

Science 220:4598 (1983), pp. 671-680.
8. G. C. Fox, D. Jefferson, and S. W. Otto, Dynamic Load Management in Distributed

Systems.
9. J. Salmon, C3P Memo 78 (1984).

10. R. Morison and S. W. Otto, Scattered Decomposition for Finite Elements.
11. G. C. Fox, C3P Memo 97 (1984).
12. M. Johnson, C3P Memo 137 (1985).

