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1. I N T R O D U C T I O N  

Despite the remarkable advances in computing power achieved in the latter 
half of this century, it seems unlikely that further order-of-magnitude 
progress due to improvements at the microscopic (integrated circuit) level 
can be maintained. Even if the seemingly inexhaustible well of cleverness of 
the chip designers fails to run dry, economical and fundamental physical 
constraints will eventually force a leveling off. 

Accordingly, it is worthwhile to examine other approaches to unboun- 
ded computing power. At present, the concept of parallel processing, where 
many computers run parts of a problem simultaneously, appears more 
promising. If parallel computing technology and algorithms can be 
developed such that the speed-up (ratio of computing speeds of a con- 
current computer to a single processor) increases sufficiently rapidly with 
the number of processors in the parallel machine, then increases in both 
calculational speed and (distributed) fast memory are in principle 
unlimited. The Caltech/JPL Concurrent Computation Program (C3P) (1) 
has produced hardware and software capable of satisfying this criterion for 
a wide class of large computational problems. It is the purpose of this 
paper to describe our work on a particular member of this class, namely 
Monte Carlo physics simulations. 

We begin with a discussion of the Caltech/JPL parallel processors and 
of the issues involved in writing efficient parallel algorithms. Several 
parallel processors have been constructed and are running; we describe 
their general features below. 

The  H y p e r c u b e  

A Caltech/JPL parallel processor is a multiple-instruction-multiple- 
data (MIMD) machine. That is, each node is a complete CPU with 
arithmetic unit and memory. Each node can be execute instructions and 
access its own memory independently of the others. This is in contrast to, 
for example, a single-instruction-multiple-data (SIMD) machine (another 
common parallel architecture) which applies the same instruction in all of 
its nodes to different sets of data. 

The nodes can communicate with each other via a message-passing 
system. An exterior processor, called the Intermediate Host (IH) serves as a 
data conduit between the hypercube and the outside world. The eom- 
munication topology of the computer is that of a p-dimensional cube 
(hence the name "hypercube") with 2 p processors forming the vertices (see 
Fig. 1). The p links per vertex represent the possible communication chan- 
nels. Thus, though the total number of nodes (N=  2P) may be large, the 
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Fig. 1. Hypercube architecture: 2 p computers  at the corners of a cube in p dimensions, con- 
nected along the edges of the cube. 

maximum communication distance is small, equaling p. This topology 
appears to be an excellent compromise between the two extremes of no 
communication between nodes (simple design but very limited in the types 
of problems the machine can handle) and direct communication links 
between all nodes (fastest communication, but N(N- 1)/2 links for an N- 
processor machine calls for complex and expensive hardware). Moreover, 
the hypercube includes within it the topologies of most scientific problems 
(e.g., meshes, rings, binary FFT). More specific information on the 
hardware for the various hypercubes in use or planned can be found in the 
Table I. 

Philsophy of Parallel Algorithms 

Define the efficiency of a parallel processor as 

S 
~ = -  (1) 

N 

where a particular problem runs S (the speedup) times faster on an N-node 
concurrent processor than on a single-node machine using an optimal 
sequential algorithm. The efficiency is less than unity for three reasons: 

1. Communication overhead 
The time spent communicating between processors is "wasted." It is 
desirable to minimize the ratio of communication to calculation time. 
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Table I. Comparison of Hypercubes 

-- -- Finished/Available Machines c -- -~ ~- Next generation 

Caltech(Seitz), Caltech(JPL), INTEL, Caltech(JPL), 
Mark I Mark II iPSC Mark III 

Main processor Intel 8086, INTEL 8086, INTEL 80286, MOTOROLA 68020, 
5 Mhz 8 Mhz 8 Mhz 16 Mhz 

8 32 32 32 

64 128 128 1024 

0.125 0.25 0.5 4 + add-on 

INTEL 8087 INTEL 8087 INTEL 80287 MOTOROLA 68881, 
WEITEK 1164/1165 

(Scalar unit) 

30-45 K 30-45 K 100 -~ 1000 K b 

Nodes/module 

Maximum nodes/machine 

Memory/node (Mbytes) 

Floating point processor 

64-bit floating point 20-30 K 
performance (flops/node) 

Raw communication 4 6 
speed (Mbit/s) 

Measured communication speed 0.5 
(including software 
overhead) (Mbit/s) 

Maximum machine 8 32 
memory (Mbytes) 

Maximum machine 10 25 
performance (x VAX 11/780) 

10 100 

0.8 0.01 ~ 0.5 a 15 (estimate) 

64 4096 

~30 1000--.5000 b 
(scalar) 

aThe higher bandwidth (0.5Mbits/s) is for large packers (~>1 Kbyte) only. The lower value 
corresponds to small packets containing few words. 

b The mark III vector floating point unit will give up to a factor of 10 higher performance. 
c Commercial hypercubes from AMETEK, Floating Point Systems and NCUBE were not available 
for evaluation when this article was written. 

. 

. 

L o a d  b a l a n c i n g  
It  is o p t i m a l  to have  each processor  d o i n g  the same  a m o u n t  of work ;  
o therwise  some  processors  will be idle pa r t  of  the  time. 

N o n o p t i m a l  para l le l  a l g o r i t h m  
It  m a y  be tha t  the m o s t  efficient para l le l  a l g o r i t h m  for a g iven p r o b l e m  

is n o t  as g o o d  as its best  s equen t i a l  c o u n t e r p a r t .  As a n  example  the so- 
cal led "b i ton i c "  so r t ing  a l g o r i t h m  is very efficient in  ach iev ing  load-  
b a l a n c i n g  a n d  low c o m m u n i c a t i o n  cost  on  the hype rcube ,  b u t  is p o o r e r  
t h a n  m o d e r n  sequen t i a l  so r t ing  schemes.  ~2) 
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In practice one attempts to balance the computational load and 
minimize communication time by an optimal decomposition of the 
problem. That is, the degrees of freedom (fields, particles, galaxies, matrix 
elements, etc.) of the problem are divided up into subdomains each of 
which is assigned to a different processor. In general, this is not a trivial 
task. However, for the Monte Carlo physics problems addressed in this 
paper (QCD, 2-D melting, long-range interactions), decomposition is 
relatively straightforward because the computational work associated with 
each degree of freedom is about the same. It follows that the optimum 
strategy is to attempt to maintain equal numbers of degrees of freedom in 
each processor to achieve load-balancing. There exists as well many 
situations in which the computational work per degree of freedom varies 
greatly. An example is a war game simulation, where the computational 
load involved in calculating the effects of a missile landing is significantly 
greater than that of advancing a soldier forward in time! Such problems 
are termed "inhomogeneous" and represent a difficult optimization 
problem for parallel implementation. A statistical approach, namely 
simulated annealing, to load-balancing such problems will be described in 
Section 3. 

If we focus for the moment on homogeneous problems, we will be able 
to elucidate some general points concerning concurrent computation. A 
primary question is what problems are amenable to solution via parallel 
algorithms. The answer is "large" problems, large in the sense of possessing 
very many degrees of freedom. Small problems suffer in general from a low 
efficiency because communication between processors and load imbalance 
effects consume a significant fraction of the total running time. This is clear 
from a consideration of "short range" problems where a calculation for any 
one degree of freedom depends only on its near neighbors. Here com- 
munication between processors is clearly an edge effect and declines as a 
fraction of the total run time as the number of degrees of freedom per 
processor grows. Longer-range problems retain high efficiency despite 
greater communication needs, however, because they are in general much 
more computationally intensive as well. This example illustrates another 
feature of concurrent computation; parallel computers prefer "hard" 
problems, that is, problems that require significant calculation per degree 
of freedom. 

It is possible to quantify some of these ideas in the following equation 
for the efficiency 

( const t .... m) (2) 
e =  1 f ( n )  toa,c / 

Here t . . . .  /to.~c is the ratio of typical interprocessor communication 
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time to calculation time and is the key hardware characteristic determining 
the communication overhead. The quantity f(n) is a function of the num- 
ber of degrees of freedom in each processor. For all problems we have 
studied, f is a monotonically increasing function of n. Finally, the constant 
depends on the amount of calculation per degree of freedom and declines 
as the complexity of the problem increases. Equation (2) demonstrates that 
the speed-up S = ~N will be linear in the number of processors as long as n 
is kept fixed. The efficiency suffers, however, if one keeps the problem size 
fixed while scaling up the number of nodes in the concurrent computer. 

It should now be clear why Monte Carlo physics problems are good 
candidates for treatment via parallel algorithms: they typically consist of 
large numbers of degrees of freedom (sometimes 10 6 o r  more) and often 
require quite complex computations. We point out, however, that Monte 
Carlo problems are but one example of a wide class of problems that we 
have found to be amenable to numerical solution on a parallel computer. 

2. MONTE CARLO PHYSICS ON THE HYPERCUBE 

Before proceeding to the several kinds of physics problems we have 
attacked by Monte Carlo methods on the Caltech/JPL parallel processors, 
we briefly describe two issues that are important in the development of 
convenient Monte Carlo algorithms. We first address the question of 
generating random numbers in parallel. This should not be done in some 
naive way; for instance, if one merely gives the random number generators 
different starting seeds in different nodes, how is one to be sure that some 
strong correlation doesn't develop between the various sequences? For- 
tunately, there exists a way for a parallel random number gnerator to easily 
mimic the behavior of that on a sequential machine. 

The most common method for generating pseudo-random numbers is 
called the linear congruential method and is given by 

%+1 = (aT, + b) mod(m) (3) 

where ~ is a sequence of pseudo-random numbers and a, b, and m are con- 
stants. It is possible to reproduce this sequence exactly on a parallel 
machine. For N processors, the idea is to have every processor calculate the 
Nth iterate of (3). Given (3), it is easy to write down the n + Nth member 
of the sequence directly in terms of the nth (33 

T n +  N = (ATn + B) mod(m) (4) 

A = a  N 

B = ( l  +a+a2 + ... +aN-1)b 
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Now the idea is to have each node compute random numbers using 
(4) (the sum is calculated only once and stored). If the nodes are now gives 
a staggered start in the random number sequence, the procesors will "leap- 
frog" over one another and will reproduce exactly the random number 
sequence of a sequential machine. This is convenient for debugging com- 
plex parallel programs and also erases worries one might have regarding 
correlations between the random numbers at each node. 

The second issue a Monte Carlo parallel programmer must face is the 
problem of satisfying detailed balance. That is, one is assured that a set of 
configurations {C} are distributed according to the correct (Boltzmann) 
distribution by requiring 

P(C--+ C') e -s(c'~ 

P(C'--+ C) e -s(cl (5) 

where P is the transition probability from one configuration to the next 
and S is some function of configurations (e.g., the action). In order for 
detailed balance to hold during a configuration update, it is necessary that 
the previous state be well-defined. This presents some difficulty in con- 
current applications, where many updates can occur simultaneously. Such 
a problem is particularly severe for systems with long-range interactions, 
where the influence of a change in a single degree of freedom is felt over 
great distances. We shall see that maintaining the detailed balance con- 
dition is an important constraint affecting the development of concurrent 
Monte Carlo algorithms to measure the properties of such systems. 

S h o r t - R a n g e  In te rac t ions:  Lat t ice  G a u g e  T h e o r y  

Our first example (4~ is relatively easy to implement with a parallel 
architecture. Lattice gauge theory models a quantum field theory on a dis- 
crete, finite spare-time lattice. The degrees of freedom are the field variables 
at each site. The problem is homogeneous and regular because the amount 
of computational work associated with each variable is the same and 
because sublattices of equal size can be assigned to each processor. Con- 
sequently, load-balancing is trivial. Concurrency arises from updating via 
Metropolis or heat bath techniques separate sites in each processor 
simultaneously. Since the gauge theories commonly studied possess interac- 
tions between field variables on nearest-neighbor sites only, communication 
and detailed balance constraints are an edge effect. 

Let us examine this point in some detail. For nearest-neighbor inter- 
actions, lattice dimension d, and number of variables per processor n, the 
calculation time involved in a sweep of the lattice is 2dntoa~c. The 
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communication time is 2dn(a+~)/Jt . . . . .  (see Fig. 2). The ratio falls with 
increasing n as 

comm 1 tcomm 

calc n t/d /talc 
(6) 

which derives f ( n )  of (2). Remarkably, the communication overhead ratio 
improves as the length of interaction increases. This is because while com- 
munication time increases, so does the calculation time. In fact, for the 
two-dimensional case illustrated in Fig. 2, it can be shown that f ( n )  ~ n as 
the interaction length --, oo. For the short-range lattice gauge problem con- 
sidered here, detailed balance is easily satisfied since neighboring points 
across a processor boundary need never be updated simultaneously. The 
operating system (OS) is designed so that processors that get out of step 
for some reason (e.g., one runs slightly slower than the others) are 

communicated ~ �9 

Processor " ~ *  ] 
boundary �9 �9 

Stencil .~0 

�9 Calculation 4n tool= 
Communication 4 . ~  t : ~  
Colc/Comm ~ ~ (tc=1r 

� 9 1 4 9  

� 9 1 4 9 1 4 9  

O O O 0  

Stencil ,~ 

Calculation 8n tc,lc 
Communicotbn 8-,~ tcor~ 
Colc/Comm - ~ (tcQl:/tcomm) 

�9 0 

Stencil i { i  
Calculation 8n tr162 
Commun~otion 4(~n+l) tcomm 
Calc/Comm - 2.r (to=I:/tcomm) 

Fig. 2. Communica t ion  as an edge effect, illustrated for a two-dimensional  lattice with 
16 sites per  processor.  
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resynchronized whenever communication occurs. Another characteristic of 
this OS is that communication occurs only between processors on 
neighboring vertices of the hypercube. It is called the Crystalline Operating 
System (CROS). (1~ 

In the Lagrangian form of lattice gauge theory, most observables 
require integrals over loops that can spread over several processors. 
Explicitly keeping track of all necessary interprocessor communications is 
more difficult here than for the updating problem described above. 
However, it is possible to construct a simple recursive algorithm which 
takes a list of number as input (each number giving the direction of one 
step in the loop) and travels around the loop. The same shape loop is 
necessarily calculated by all processors simultaneously, which is entirely 
satisfactory. 

The problem we have studied most extensively is the potential as a 
function of distance between static quarks in the quenched approximation 
to lattice QCD (results are shown in Fig. 3 for a 204 lattice). Efficiencies on 

(*I0) 
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I~.74 

15.3t 
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V (Ge V) 
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IZ.54 

/ / 
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/ 

/ 

1 1 . 1 4  
I I i t i 

4.16 9.75 15.33 20.91 26.49 32.0S 37.68 

(=io) 

r (GeV -1 ) 

Fig. 3. Q(2 potential vs distance computed on 204 lattice in the quenched approximation to 
lattice QCD. 
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the order of .95 were consistently obtained. This was due to the high degree 
of load-balancing obtained, low communication overhead, and the inherent 
complexity of the calculations involved (multiplication of SU(3) matrices). 
In particular, the constant in (2) is found to be proportional to 1/m for 
SU(m) gauge groups. Most problems in lattice gauge theory appear to be 
amenable to a parallel treatment. The kinds of problems we have or will 
run include the qO potential, glueball masses, renormalization group, field 
distributions, pseudo-fermions, and Hamiltonian and Langevin methods. 

Medium Range Interactions: Two-Dimensional Melting 

Here we consider an example (5) that poses two additional challenges 
to the concurrent programmer--how to handle an "irregular" problem, 
and the need to be careful in maintaining detailed balance. The problem 
studied is that of the solid-liquid phase transition in two-dimensions. The 
system consists of a collection of particles interacting through a pairwise 
potential. A standard Metropolis Monte Carlo procedure is employed in 
the simulation. As usual, the correct distribution of configurations will be 
attained only if particles close enough to affect one another are never 
updated simultaneously. This is, of course, never a problem in a sequential 
algorithm but require careful programming on a parallel processor. 

The particles in the simulation are grouped into structures called cells. 
Each cell represents a fixed region of space. The size of the cell is chosen 
sufficiently large so that the only particles that can affect a particle during 
an update can be found in the same cell as the particle in question and in 
the eight neighboring cells. The initial configuration consists of 16 particles 
in each cell. The cells are distributed equally among processors; each 
processor can contain from 1 to 64 cells (16 to 1024 particles). It is clear 
that during the simulation particles can become unevenly distributed 
among the processors since they are free to move between cells. Com- 
putational loads are therefore unbalanced as well, though, since the density 
is reasonably high, the imbalance is not great. Because the computational 
work per particle remains the same, this problem falls within a class termed 
"irregular homogeneous." 

Updates occur concurrently in all processors. Detailed balance is 
assured by the following "time-stamping" algorithms. When a particle in a 
cell in processor A is being updated and requires position information 
about particles in a neighboring cell in processor B in order to evaluate th~ 
potential energy, a request for this information is sent to B. We associate 
with each particle being updated a time. This time will be the same for a// 
requests generated by this particular particle update in processor A. (The 
time is generated by the local clocks in each processor. The algorithm is 
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most efficient if one could use a global clock, but is consistent whatever the 
relative timing of the local clocks. The algorithm synchronizes the clocks in 
the processors occasionally and is not affected by small drifts in between.) 
When a conflict occurs with a simultaneous update in processor B, for 
example, a response is sent if the time stamp of the information request 
from A is earlier than that of update occurring in B. If the time stamp of 
the information request from A is later, it must wait for a response until the 
update in B is finished. The "earliest" update is given priority. 

This rather elaborate means of resolving update conflict is necessary 
because of the special nature of the communication scheme used for this 
problem. Instead of communications synchronizing the progress of the 
processors as in the previous example, problems that are irregular require 
the ability to run asynchronously on a parallel machine for efficient 
operation. That is, the sending or receiving of a message should not halt 
operations in a processor, rather the processor should be able to complete 
its immediate task before attending to exterior data. Such a communication 
system is called "interrupt driven" (IDOS(12)). Another characteristic of 
this system is the ability to forward messages, since not all messages are 
addressed to adjacent processors in this problem. 

The complicated communication structure and imperfect load 
balancing reduce the efficiency of the algorithm when compared to homo- 
geneous problems. Nonetheless, efficiencies as high as 85 % were achieved 
for the maximum size problem of 1024 particles per processor. For the 
minimum size problem of 16 particles per processor (1 cell), the efficiency 
was 50%. The hypercube prefers large problems! 

Long-Range Interactions: Two-Dimensional Coulomb Gas 

We come now to the problem (6) of long-range interactions, where the 
efficiency of a parallel computation has often been questioned. Consider a 
two-dimensional Coulomb gas at temperature T on a D x D square lattice 
with, for simplicity, free boundary conditions. On each site r =  (x, y) is 
defined as an integer electric charge variable q(r)= -1,  0, + 1. The energy 
of each configuration {q(r)} is 

E({q(r)}) = ~ q2(r) In D _  q(r) V(r) (7) 
c F 

where the electric potential 

V(r)= ~ q ( r ' ) l n ( ~ )  
I'" ~ I" 

(8) 

82243/5-6-32  
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and c parameterizes the charge self-energy. Configurations {q(r)} are 
generated by a heat-bath type of algorithm. Details can be found in Ref. 6. 
For our purposes it is sufficient to know that an exponential function of the 
potential V, co, is defined so that if an update attempt 

Aq = qneW(ro) -- q~ =/: 0 (9)" 

then at the other lattice sites r, ~o(r) is updated by 

( I t -   _012)  q/T 
\ D2 j (10) 

and only then does the program proceed to a new r o. This ordering is 
obviously crucial for maintaining detailed balance. Such a procedure for 
handling long-range forces is easily implemented on a sequential machine; 
we proceed to show that an efficient concurrent algorithm exists as well. 

For N processors, we divide up the lattice into N domains with an 
equal number of sites n. Each processor is assigned a domain and stores the 
charges q and weights ~o in the domain. The IH will manage the progress of 
the algorithm. All processors concurrently generate charge updates at a site 
r~, where i is the processor number, and send the site location and the 
value of Aq to the IH. Because the acceptance rate is small, many hits are 
made at each site. The IH steps through this data set until the first nonzero 
Aq is obtained. It and the site location are passed to all the processors so 
that the weights m(r") can be updated. All other updates are discarded. This 
insures that the detailed balance is maintained. This sequence is repeated 
with the proviso that the IH restarts the inspection of the data set for suc- 
cessful updates at the procesor following that whose update was successful 
in the prior iteration (the set is inspected cyclically, i.e., the first position 
follows the last). The low acceptance rate requires this procedure; if the 
acceptance was high the updates could be done sequentially in a single 
processor. For large or small acceptances, we thus find that the calculation 
time spent updating the o)(r) is much greater than that spent updating q or 
communicating to and from the IH (the "sequential bottleneck"), and so 
the time wasted is relatively small. Hence, efficiencies on the order of .95 
are obtained. At constant n, therefore, speed-up is linear in n with a slope 

1. A detailed analysis of the efficiency can be found in Ref. 6. 

3. M O N T E  C A R L O  A P P R O A C H  TO C O N C U R R E N T  
O P E R A T I N G  S Y S T E M S  

Load-balancing affects crucially the prformance of a computation 
executing in parallel on a concurrent processor (CP). By "load-balance" we 
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refer to the amount of cpu idling occurring in the processors of the con- 
current computer: a computation for which all processors are continually 
busy (and doing useful, nonoverlapping work) is considered perfectly 
balanced. This balance is nontrivial to achieve, however. The problem of 
distributing a computation in an efficient manner onto a CP can be fruit- 
fully attacked via the Monte Carlo technique of simulated annealing. (7) The 
work described in this section is described in more detail in Ref. 8. 

Operat ing System Model  

We have some large computation which we would like to execute in 
parallel on the CP. To do this, of course, the computation needs to be split 
up into small pieces which we will call processes. The number of processes 
is not necessarily the same as the number of processors of the CP. 
Processes will need to communicate with one another in order for the com- 
putation to proceed. Assume that the processes and their communication 
requirements are changing with time; processes can be created or 
destroyed, communication patterns will move. This is the natural choice 
when one is considering timesharing the CP, but can also occur within a 
single computation. It is the task of the Operating System (OS) to manage 
this set of processes, moving them around if necessary, so that the CP is 
used in an efficient manner. 

The OS performs two primary tasks. First, it must monitor the ongo- 
ing computation so as to detect bottlenecks, idling processors, and so on. 
Second, it must modify the distribution of processes and also the routing of 
their associated communication links so as to improve the situation. In 
general, it is very difficult to find the optimum way of doing this; in fact, 
this is an NP complete problem. Approximate solutions, however, will 
serve just as well. We will be happy if we can realize a reasonable fraction 
(lets say .5) of the potential computing power of the CP for a wide variety 
of computations. The Monte Carlo based method of simulated annealing 
seems to offer a way of doing this. We will see in what follows that the OS 
functions as a heat bath, keeping the computation "cool" and therefore 
near its' ground state (optimal solution). 

The Physical Analogy 

One may usefully think of a parallel computation in terms of a 
physical analogy. Treat the processes as "particles" free to move about in 
the "space" of the CP. The requirement of load balancing acts as a short 
range, repulsive "force," causing the particles, and thereby the com- 
putation, to spread throughout the CP in an evenhanded, balanced man- 
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ner. The situation is somewhat similar to a gas or fluid filling up a con- 
tainer. This analogy, though, is not complete. In a gas, the repulsive 
pressure which fills the container is due to the microscopic motion 
(velocity) of the particles, not to any true, repulsive force between them. In 
the case at hand, we do not want the particles (processes) to have a 
significant velocity--we want them to move slowly so that they "stay put" 
in processors long enough to do useful work. A better analogy, therefore, is 
that of particles interacting via a repulsive force in a system at a low tem- 
perature. 

A conflicting requirement to that of load-balancing is interparticle 
communications; the various parts of the overall computation need to com- 
municate with one another at various times. If the particles are far apart 
(distance being defined as the number of communication steps between 
them) large delays will occur, slowing down the computation. We therefore 
add to the physical model a long-range, attractive force between those 
pairs of particles that need to communicate with one another. This force 
will be made proportional to the amount of communication traffic between 
the particles, so that heavily communicating parts of the computation will 
coalesce and tend to stay near one another in the computer. 

S i m u l a t e d  Annea l ing  

The above can be taken as a rough description of the "Hamiltonian" 
of the parallel computation. The problem of executing the parallel com- 
putation in an efficient manner now becomes that of finding the ground 
state of this Hamiltonian. A powerful method of solving this problem is 
called simulated annealing. (7~ This technique begins with an arbitrary 
initial state (in our case, an arbitrary decomposition of the processes onto 
the CP). The Metropolis Monte Carlo method is then applied to this 
starting configuration, where trial changes are made to the configuration 
and are accepted or rejected in the usual way. In this way, the OS functions 
as a heat bath at temperature T. When one starts the annealing, bringing 
the system in contact with the heat bath, the system is at some temperature 
other than T. After some amount of time (the thermalization time) the 
system and the heat bath reach thermal equilibrium. The annealing now 
consists of slowly (adiabatically) lowering T. This pulls down the tem- 
perature of the system with it (if done sufficiently slowly) so that eventually 
only the ground-state configuration of the system survives (remember, 
probability ~e  - m r  and T ~  0). 

Physically, the OS functions to keep the system in thermal 
equilibrium, and cool. 
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A Good Hamiltonian 

Let us be more precise and actually specify a Hamiltonian with the 
desired features. Think of the processors as "sites" and of the com- 
munication channels between them as bonds or links. The Hamil tonian will 
be a sum of terms defined on the sites and the bonds. Define 

Wi = the computat ional  load of process i (11) 

The OS determines this load by monitoring what happened in the recent 
part. Once we have the Wis we need to add to the Hamiltonian a quadratic 
term in the sum of Wis at the node so as to affect load-balancing 

For  c~ positive, this produces a short-range repulsive force between 
processes. 

Now for communication costs. A reasonable choice for the cost 
flmction of communications seems to be the following. Define 

c o. = amount  of communicat ion traffic between processes i and j (13) 

d o. = number  of steps in computer  of chosen pathway 

H . . . .  =Zci jd i j  
ij 

= communication cost which impacts the system linearly 

= a linear potential energy between processes ~ a constant (as a 

function of distance) attractive force between processes. 

H . . . .  is a long-distance nonlocal term, but because we have made it 
linear in d~ (which seems a correct choice) we can actually deal with it in a 
local manner. Communicat ion costs are naturally associated with the 
bonds of the machine. The OS will moni tor  the communication traffic 
going through a channel (bond) and then associate with this traffic an 
energy cost Hbona. Since any particular communicat ion pathway will show 
up in all the bonds along its path, this will produce a linear (in distance) 
cost to the overall system. We have 

gTntal = Z gsite + Z gbond (14) 
sites bonds 

As defined so far, we can think of this Hamiltonian as describing a set 
of particles which repel each other at very short distances and also have a 
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set of rubber bands stretched between them which causes them to attract 
one another over long distances. There is one additional effect we would 
like the Hamiltonian to produce--we do not want the communication traf- 
fic to be overly high at any particular link. Physically speaking, we can 
think of this congestion effect as being a short-range, repulsive force 
between the rubber bands themselves all along their lengths. This seems to 
be a complex interaction to model, but can actually be done easily. We do 
this by completing our specification of Hbond. We do what we did before-- 
measure the traffic through a link, but instead of associating a linear cost 
(in traffic) at this link, we use a quadratic cost. That is 

tlink -~ traffic through link (15) 

Hbond = ~(tlink) 2 

with ~ some parameter. As before, this quadratic cost causes the "rubber 
bands" to repel one another all along their path. Our complete 
Hamiltonian is that of (14), with Hsite given by (12) and Hbond given by 
(15). 

This rather nontrivial (but easily, that is, locally, computable) 
Hamiltonian load balances, holds down communication delays, and holds 
down communication traffic congestion (which effects both the startup 
delay and flow-through, streaming rate of communications). 

A Toy Example 

To illustrate a few of the ideas presented here we will present the 
results of the above methods applied to a simple example. The example 
computation to be performed on the CP is the time evoluation of a set of 
particles about in a two-dimensional world, interacting via a short-range 
force. In the terminology of the last section, we can think of each physical 
particle as representing one process. The short-range force means that the 
computational load associated with the update of a single particle is a 
function dependent upon the number of neighboring particles to the one in 
question. 

The usual method of evolving a set of particles like this on a CP is 
shown in Fig. 4 ~ t h e  problem is decomposed by dividing the physical space 
up into equal area squares. The problem with this type of decomposition 
is that the particles move about, form clumps, shock waves, and so on, 
causing load imbalances. This type of performance degradation has been 
seen in actual computations on the Caltech/JPL Hypercube. ~ We model 
this kind of imbalance by choosing the particles of our toy example to 
clump somewhat toward the center of the space, as is seen in Fig. 4. The 
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Fig. 4. The toy problem to be load-balanced: the time evolution of particles moving about in 
a two-dimensional world�9 The particles interact via a short range force. This configuration was 
constructed with a strong clumping toward the center in order to study load-balancing. 

performance degradation that this clumping would lead to for the square 
decomposition is shown in Fig. 5, where it is seen that the computat ional  
load (including communication costs) per processor varies from 173 to 3 
(in some arbitrary units)�9 

The computational  efficiency for the square decomposition can be 
estimated as follows�9 The average computat ional  load for this example is 
39.6, so an optimal decomposition would give each processor an amount  of 
work slightly higher than this average. The optimal value will be somewhat 
higher than the average since the optimal decomposition will necessarily 
have greater communication costs than the square decomposition of Fig. 5. 
This is due to the fact that as the high load areas of the problem are 
divided up among many processors, more communication traffic must 
occur, and this is counted as part  of the energy cost. For  the square decom- 
position, however, one processor has a load of 173, and the overall com- 
putation will proceed only at the speed of the slowest processor. An 
estimate of the efficiency is therefore 40/173, or 0.23. 
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Fig. 5. The same as Fig .  4, with the usual, square decomposition overlaid. The numbers 
represent the total computations load in each processor. At this point, the computation is 
extremely unbalanced: the loads vary from a high of 173 to a low of 3. 

A simulated annealing Monte Carlo was applied to the example. For 
ease of visualization, the processor boundaries were moved instead of 
moving the particles, with the constraint that the regions update by each 
processor remained convex quadrilaterals. After annealing, the result shows 
in Fig. 6 was obtained, with computational loads varying from 49 to 31, 
within about 20 % of the optimum solution. The processors have migrated 
toward the center, all getting a "piece of the action" at the central clump of 
particles�9 Note that, as mentioned above, the mean load per processor 
increases as the annealing proceeds. The efficiency of the computation, now 
that the simulated annealing has taken place, is 40/49, or .82. 

Continued annealing would eventually find the actual optimum, but a 
point of diminishing returns is quickly reached where many Monte Carlo 
sweeps are required to improve the situation only slightly�9 The Monte 
Carlo itself will use up computational cycles of the CP, so it is clear that in 
any real situation one will have to put up with some imbalance. It is worth 
pointing out that the simulated annealing noticeably outperformed simple 
iterative improvement�9 Iterative improvement can be though of as the 



Fig. 6. The result after annealing the decomposition. The processor regions were restricted to 
remain quadrilaterals. Balance is now quite good: varying from 49 to 34. 
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Fig. 7. The "shock wave" example. 
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As in Fig. 5, the usual decomposition produces an imbalance varying from 220 to 1. 

Fig�9 9. The result of annealing�9 The max imum load has now decreased to 58, meaning that 
the entire computat ion will run at this speed. The restriction to a 6 • 6 connected set of 
quadrilaterals has constrained the annea l ing- -a  better solution could be found with a more 
general decomposition. 
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Monte Carlo algorithm with the temperature set to O~only moves which 
improve the situation are accepted, all others are rejected. In terms of the 
energy function, this method goes only downhill and so therefore gets trap- 
ped in local minima--a  phenomenon observed in the case at hand. 
Iterative improvement, however, can be done rapidly. Since in practice one 
can never reach the true optimum anyway, it may form a useful heuristic in 
some cases. 

An irregularity of a different shape was also tried and is shown in 
Fig. 7. This "shock wave" example has an enhanced density of particles 
occurring along the diagonal of the space. The load imbalance of the naive 
decomposition is shown in Fig. 8. The loads vary from a high of 220 to a 
low of 1, corresponding to an efficiency of roughly 0.18. After annealing, 
the result of which is shown in Fig. 9, the processors crowd along the 
"shock" and change the load distribution to a max of 58 and a rain of 26, 
or an efficiency of about 0.69. 

Scattered Decomposition 

We will close by describing a new decomposition technique which 
load-balances in a very natural way and can be understood in terms of the 

Fig. 10. The example finite element problem. 
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physical analogies discussed above. This decomposition is very simple to 
implement and seems to be effective for many types of load-balancing 
problems. We present the method in the context of finite element analysis 
of structure of a nontrivial shape (i.e., not rectangular), but it is obviously 
more general than this. ~l~ 

Figure 10 shows the example computation: the finite-element analysis 
of a shape which doesn't map onto a hypercube or mesh-connected com- 
puter in any trivial way (that is, via a square or rectangular decom- 
position). Suppose, for simplicity, we wish to perform this calculation on a 
two-dimensional mesh of processors. The optimal decomposition, which 
could be found by the methods outlined previously, will look something 
like that shown in Fig. 11. This is all well and good, but it must be admit- 
ted that simulated annealing is a nontrivial undertaking: if we could find a 
simple method which gave decompositions almost as good, we would be 
happy. The "scattered decomposition" accomplishes this. 

The decomposition is arrived at in the following way. First, take the 
entire problem and surround it by a large rectangle. The rectangle is sub- 
divided into smaller rectangles, as shown in Fig. 12. Call these smaller rec- 

Fig. 11. A decomposit ion of Fig. 10 onto a 16-processor CP which is close to optimal. The 
dotted lines show the areas of responsibility of each processor. 
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Fig. 12. The template overlay. The large squares are "templates," each of which will be 
decomposed onto the CP. 

tangles "templates." The fundamental idea is to decompose each of the tem- 
plates onto the CP by the usual square decomposition. This is illustrated 
for template A in Fig. 13. Where a processor region dosn't actually intersect 
any of the problem, a null pointer or some appropriate data structure is 
stored which signifies that the processor has nothing to do in this template. 
After each template is decomposed, the overall situation is as depicted in 
Fig. 14~the scattered decomposition. The point is that each processor is 
responsible for a scattered subset of the large rectangle; therefore, each 
processor will tend to have approximately the same number of intersections 
with the actual problem. The concurrent algorithm proceeds by cycling 
through the "stack" of templates, updating each according to the usual, 
rectangular algorithm. If the algorithm is written correctly (i.e., by not 
forcing resynchronization during the update of each template; for details 

822/43/5-6-33 
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Fig. 13. A magnified view of the template marked A in Fig. 12. Each of the smaller, dotted 
squares is a processor of the CP: the template has been decomposed onto a 4 x 4 mesh of 
processors. The processors are responsible for the finite elements landing within their regions. 

see Ref. 10), it will load-balance quite accurately for arbitrary problems! 
Similar ideas were used in some types of matrix algorithms. (11) 

As the templates are made smaller, the load-balancing will become 
more accurate. The price paid, of course, is increased communication 
overhead. Generically, the scattered decomposition will have much more 
communication traffic than the optimal decomposition of Fig. 10. Often, 
however, communications are relatively cheap (1) and so the scattered 
decomposition becomes an attractive possibility. This statement is further 
enhanced by the fact that the communication pattern involved in the scat- 
tered case is that of the simple, two-dimensional mesh, nearest-neighbor 
variety. This kind of communication strategy, in contrast to general, long- 
distance message passing (with message forwarding), can typically be made 
very fast. An example is the "Crystalline Operating System" for the 
Caltech/JPL Hypercubes. (1) 
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Fig. 14. The entire scattered decomposition, with processor numbers shown. 

It seems fairly clear that the scattered decomposition will be a useful 
technique in many situations. It would be nice to relate it somehow to the 
physical analogies presented above since a deeper understanding would 
possibly result. 

One of the outstanding features of the scattered decomposition is its 
stability. By this we mean that, as the computation changes with time (par- 
ticles move, clumping occurs, etc.), the scattered decomposition is quite 
insensitive to these changes and will continue to load-balance rather well. 
Consider again the computation of Fig. 6. Suppose now that the particles 
move and new clumping occurs somewhere else in the physical space. If the 
decomposition of the space remains static, severe load imbalances will 
rapidly develop. Our first proposal for coping with this is to have the 
operating system continue to run the annealing as the computation 
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HCt) 

Decomposition 

Fig. 15. A sketch of the Hamiltonian versus all possible decompositions. 

progresses, and this certainly remains a viable alternative. A scattered 
decomposition applied to this problem will continue to load-balance for 
almost any pattern of clumping, however, without any annealing. Each 
processor "probes" all regions of the problem and so it is rather unlikely 
that any load imbalance will occur. We term this property stability. 
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Fig. 16. 
Decomposition 

The Hamiltonian at two different times. The scattered decomposition is a relatively 
stable minimum. 
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Stability can be understood in an abstract way in terms of the 
Hamiltonian. Figure 15 shows a schematic picture of the shape of the 
Hamiltonian function at some particular stage in the time evolution of the 
particles in Fig. 6. The horizontal axis represents the various choices of 
decomposition, which could be used on the problem. All of this is at time t, 
which is the time parameter of the particle evolution. The two decom- 
positions, optimal and scattered, give minima, with the optimal decom- 
position being the global minimum (by definition). Now consider what 
happens to this picture as time proceeds. Something like that drawn in 

g 

Decomposition 

Ca) 

i / 

Decomposition 

(b) 

Fig. 17. The time-averaged Hamiltonian. Two scenarios are possible: the "optimal" decom- 
position remains the true minimum (a) or the scattered wins (b). 
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Fig. 16 will happen--the location of the optimal decomposition will move 
significantly, while the scattered minimum will move very little. 

In a dynamical situation, where the characteristics of a computation 
are changing rapidly, the OS will not be able to "keep up" perfectly with 
the computation. This means that the Hamiltonian that actually matters is 
not the instantaneous version plotted in Figs. 15 and 16 but a time- 
averaged Hamiltonian/q 

f 
t + T  

H(t, T) = g(u) du 

where the averaging time T is some natural time scale of the operating 
system. An interesting point is that, in terms of/4, the better decomposition 
may actually be the scattered one. Because of the rapid shifting of the 
optimal decomposition as a function of time, the minimum of / t  
corresponding to this will be raised upward while the scattered minimum 
will remain approximately the same. As illustrated in Figs. 17 (a, b), two 
possible scenarios develop--the minima may or may not cross. Depending 
upon the parameters of the problem and upon the hardware characteristics 
of the CP, a "phase transition" may occur whereby the scattered decom- 
position actually becomes the better decomposition for / t .  

4. C O N C L U S I O N S  

In this paper we have demonstrated the utility of concurrent com- 
putation when the solution of otherwise intractable physics problems via 
the Monte Carlo method is desired. The efficient use of the MIMD 
machines at Caltech for problems involving interactions of arbitrary range 
has been achieved. It appears that problems peculiar to a parallel 
implementation such as satisfying the detailed balance condition, minimi- 
zing communication between processors, and balancing the computational 
load among all the available processors have been satisfactorily resolved. 
Moreover, we propose to turn the problem on its head, so to speak, 
and use Monte Carlo techniques to enhance the efficient operation of 
concurrent operating systems. For example, we showed that simulated 
annealing methods are a potentially powerful means of optimizing the 
distribution of the degrees of freedom among the processors. An analogy 
between a physical system consisting of particles connected by interacting 
rubber bands and a possible efficient operating system of a concurrent 
processor is remarkably appropriate. We conclude that there is a natural 
and useful relationship between Monte Carlo techniques and concurrent 
computation. 
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